数学の証明と判決の共通性
弁護士の井髙将斗と申します。妻が数学(特に確率論)の研究に携わっていることから、この記事を書く機会をいただきました。私は、学生時代、どちらかというと数学は得意な方ではなく、妻から数学の知識の薄さに驚かれることがしばしばあります。
そんな私ですが、法律実務を経るとともに、妻から数学の話を聞く中で、判決と数学の証明に共通する点があると感じましたので、ご紹介させていただきます。
判決についてですが、刑事事件において、裁判官は、証拠に基づいて真実を探求し有罪判決または無罪判決を下します。
そして、裁判官は、判決の中で、証拠から結論に至る論理の流れを示します。論理の流れが示されることにより、別の裁判官、学者および一般国民などの第三者が、当該判決の論理の過程を検証できるようになります。このことは、公正な裁判の実現という観点から極めて重要なものと考えられています。
以上のことは、数学の証明と共通している部分が少なからずあるのではないかと思います。数学の証明では、論理的な思考が示されつつ解答が導かれます。これにより、第三者が、広く、当該証明の正確性を検証できます。
このように、判決と数学の証明には「論理的な思考」と「第三者による検証」という点で共通点があると考えます。この点は、判決や数学の証明のみならず、広く実社会(例えば上司や取引相手への報告など)においても大変重要です。
論理的な思考を示すという能力は、多くの人に自身の判断の正当性を示すために必要であるとともに、これにより、第三者は、はじめて、論理上の問題点を検討・指摘することが可能となり、結果として、より公正・妥当な結論が導かれることにつながります。
このような過程を経て、企業は成長し、裁判所等を含む社会が公正に動くと言っても過言ではないと思います。
他方で、主観的・感覚的な思考は、第三者が検証することが困難で、誤った結論を導くおそれが高いものと言わざるを得ません。
このような観点からは、論理的な思考力が鍛えられる数学は、社会に出るうえで極めて重要な能力を付与してくれるものではないのかと今では思います。
とりとめのない内容となりましたが、数学に少しでも興味を持っていただけたらと思っております。なお、最後に、私たち夫婦は、お互い気が強く、喧嘩は毎回大変なことになるのですが、妻の論理的な説明により、私が非を認めることが多い状況です。このような面からも論理的な思考力を鍛えることはいいのかもしれませんね(笑)。
※2016年3月掲載。情報は記事執筆時に基づき、現在では異なる場合があります。